Gradient descent is the most popular and widely used optimization algorithms used for training neural networks. Yes, Gradient descent is the first-order optimization method because with gradient descent we calculate only the first-order derivative.
##### How does the gradient descent method work?
Gradient descent is an optimization method used for training the network. First, we compute the derivatives of the loss function with respect to the weights of the network and then update the weights of the network using the below update rule:
• Weight = weight - learning rate x derivatives
##### What is the Jacobian Matrix?
The matrix is often called the Jacobian matrix if it contains the first-order partial derivatives.
##### What happens when the learning rate is small and large?
When the learning rate is small then we take a very small step and it slows down attaining the convergence and when the learning rate is large then we take a very large step and it may cause us to miss out on the global minimum.
##### What is the need for gradient checking?
Gradient checking is used for debugging the gradient descent algorithm and to make sure that we have a correct implementation.

That is, when we implement the gradient descent method for the complex neural network, even with buggy implementations, the network will learn something.

But the buggy implementation will not be as optimal as a bug-free implementation. So to ensure that we have the bug free implementation of gradient descent we perform gradient checking.

##### Description
• Gradient Descent Method Interview Questions can be used  by any candidate who is preparing for Data Scientist Interview
• All candidates who have to appear for the IT Officer  can also refer to this short questions answers section.
• Gradient Descent Method Questions can be used in the preparation of B.Sc (IT) , M. Sc (IT), BCA, MCA and various other exams.